Gradient solitons on statistical manifolds

نویسندگان

چکیده

We provide necessary and sufficient conditions for some particular couples ( g , ? ) of pseudo-Riemannian metrics affine connections to be statistical structures if we have gradient almost Einstein, Ricci, Yamabe solitons, or a more general type solitons on the manifold. In cases, establish formula volume manifold give lower an upper bound norm Ricci curvature tensor field.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative solitons on Kähler manifolds

We construct a new class of scalar noncommutative multi-solitons on an arbitrary Kähler manifold by using Berezin’s geometric approach to quantization and its generalization to deformation quantization. We analyze the stability condition which arises from the leading 1/h̄ correction to the soliton energy and for homogeneous Kähler manifolds obtain that the stable solitons are given in terms of g...

متن کامل

On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons

The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...

متن کامل

Statistical cosymplectic manifolds and their submanifolds

    In ‎this ‎paper‎, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal...

متن کامل

Eta-Ricci solitons on para-Kenmotsu manifolds

In the context of paracontact geometry, η-Ricci solitons are considered on manifolds satisfying certain curvature conditions: R(ξ,X) · S = 0, S · R(ξ,X) = 0, W2(ξ,X) · S = 0 and S · W2(ξ,X) = 0. We prove that on a para-Kenmotsu manifold (M,φ, ξ, η, g), the existence of an η-Ricci soliton implies that (M, g) is quasi-Einstein and if the Ricci curvature satisfies R(ξ,X) · S = 0, then (M, g) is Ei...

متن کامل

Ricci Solitons on Compact Three-manifolds

In this short article we show that there are no compact three-dimensional Ricci solitons other than spaces of constant curvature. This generalizes a result obtained for surfaces by Hamilton [4]. The proof involves a careful analysis of the ODE for the curvature which is associated to the Ricci flow.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2021

ISSN: ['1879-1662', '0393-0440']

DOI: https://doi.org/10.1016/j.geomphys.2021.104195